L'intérêt principal de l'article publié dans Quadrature n° 134 daté de octobre-novembre-décembre 2024 était de pouvoir calculer la ou les solutions, si elles existent, de l'équation $z^x = x$

Solutions de l'équation $z^x = x^p$ quelque soit p > 0.

Soit $f(x) = x^{px}$. Les fonctions $\Phi_0(x)$ et $\Phi(x)$ sont les fonctions réciproques de f(x) pour $0 < x < \frac{1}{e}$ et pour $x > \frac{1}{e}$.

Pour chaque valeur du nombre positif p il existe un nombre n ayant la propriété suivante.

Pour 0 < z < 1: l'équation $z^x = x^p$ a une solution.

Pour 1 < z < n: l'équation $z^x = x^p$ a deux solutions.

Pour z > n: l'équation $z^x = x^p$ n'a aucune solution réelle.

On a : $n = (e^p)^{\frac{1}{e}}$.

Pour p = 0.5: $n \approx 1.20194337$ et pour p = 2: $n \approx 2.08706523$. Pour p = 0.5 et z = 1.1: les deux solutions de l'équation $z^x = x^p$ sont : x = 1.2751596577217708 et $x_0 = 13.750075318060432$. On a toujours : $x < e < x_0$ sauf pour z = n: $x = x_0 = e$.

Avec z et x donnés on a : $p = \frac{\ln (z^x)}{\ln (x)}$

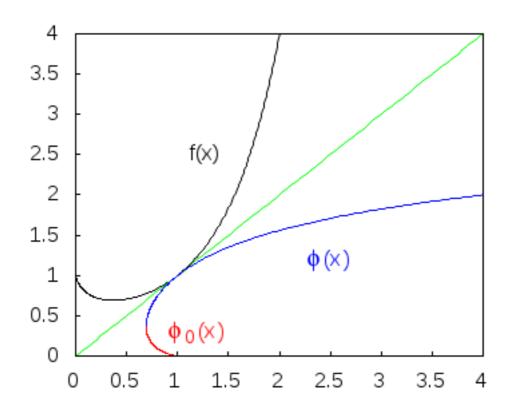
Avec p et x donnés on a : $z = (x^p)^{\frac{1}{x}}$

Avec p et z donnés on a : $x = 1/\Phi(1/z)$ et $x_0 = 1/\Phi_0(1/z)$

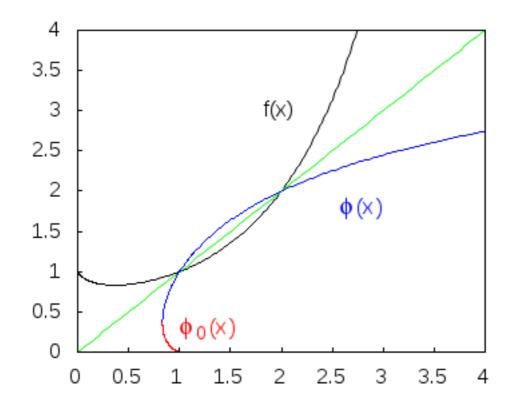
Pour $(\frac{1}{e})^{\frac{p}{e}} < x < 1$: $\Phi_0(x)$ est décroissante de $\frac{1}{e}$ à 0.

Pour $x > (\frac{1}{e})^{\frac{p}{e}}$: $\Phi(x)$ est croissante de $\frac{1}{e}$ à ∞ .

```
On a: f(x) = x^{px} = e^{px\ln(x)} => \ln(f(x)) = px\ln(x)
En fonction réciproque : ln(x) = p\Phi(x)ln(\Phi(x))
Soient w = \ln(\Phi(x)) et z = \ln(x)/p
=  \ln(x)/p = z = \Phi(x)\ln(\Phi(x)) = \ln(\Phi(x))e^{\ln(\Phi(x))} = we^{w}
\Rightarrow w = W(z)
=> \ln(\Phi(x)) = w = W(z) = W(\ln(x)/p)
=> \Phi(x) = \ln(x)/(p\ln(\Phi(x))) = \ln(x)/(pW(\ln(x)/p))
De même : \Phi_0(x) = \ln(x)/(pW_{-1}(\ln(x)/p))
On a: \Phi(x)^{p\Phi(x)} = x = \Phi(1/z)^{p\Phi(1/z)} = 1/z
\Rightarrow z = 1/\Phi(1/z)^{p\Phi(1/z)} = (1/\Phi(1/z))^{p\Phi(1/z)}
Soit x = 1/\Phi(1/z) \implies z = x^{p\Phi(1/z)} = x^{p/x} \implies z^x = x^p
Et de même : x_0 = 1/\Phi_0(1/z) \implies z^{x_0} = (x_0)^p
On peut calculer les solutions x et x_0 de l'équation : z^x = x^p en
allant à : http://www.dma.ufv.br/maxima/index.php avec les
instructions Maxima suivantes où y(x) = \Phi(x) et y(0) = \Phi(x).
[e: 2.71828182845904523536];
[y(x) := \log(x)/(p*lambert_w(\log(x)/p))];
[y0(x) := log(x)/(p*generalized_lambert_w(-1,log(x)/p))];
[p:2];
[n : (e^p)^(1/e)];
[z:2.0];
[x : 1/y(1/z)];
cabs(z^x - x^p);
cabs(y(x)^{(p*y(x)) - x);
[x0: 1/y0(1/z)];
cabs(z^x0 - x0^p);
[x0:0.85];
cabs(y0(x0)^{(p*y0(x0))} - x0);
On peut ensuite modifier : [p : 2]; ou [z : 2.0];.
```



Voici les fonctions f(x), $\Phi_0(x)$ et $\Phi(x)$ pour p = 1.



Voici les fonctions f(x), $\Phi_0(x)$ et $\Phi(x)$ pour p = 0.5.